Q7	Model Solution – 60 Marks	Marking Notes
<i>(a)</i>		
(i)	$P = 80, P = y + 2x + y + \frac{2\pi x}{2}$ $80 = 2y + 2x + \pi x$	MS (0, 4, 7, 8, 10) LPC: Forming an algebraic equation involving 80
	$2y = 80 - 2x - \pi x$ $y = \frac{80 - 2x - \pi x}{2}$	MPC: Any correct manipulation involving their equation
		HPC: Isolating the <i>y</i> term
(ii)	$Area = 2xy + \frac{\pi x^2}{2}$	MS (0,2,3,5)
	$Area = 2x(\frac{80 - 2x - \pi x}{2}) + \frac{\pi x^2}{2}$	LPC: Forming an area equation
	$= 80x - 2x^2 - \pi x^2 + \frac{\pi x^2}{2}$	HPC: Substituting y or their y into the area formula
	$= 80x - 2x^2 - \frac{\pi x^2}{\pi^2}$	
	$= 80x - (2 + \frac{\pi}{2})x^2$	
(iii)	$\frac{dA}{dA} = 80 - 2(2 + \frac{\pi}{2})x$	MS (0, 4, 7, 8, 10)
	$dx = 2^{2}$ $0 = 80 - 4x - \pi x$	LPC: Work of merit
	$4x + \pi x = 80 x = \frac{80}{4+\pi} = 11.20$	MPC: Correct differential or incorrect differential = 0
		HPC: Correct differential $= 0$
(iv)	$\frac{d^2A}{dt} = -2\left(2 + \frac{\pi}{2}\right)$	MS (0, 6, 10)
	$dx^{2} = (- + 2)$ = -4 - π = -7.14 \therefore maximum as answer is negative	PC: Work of merit to find second differential
<i>(v)</i>	Area = $80x - (2 + \frac{\pi}{2})x^2$	MS (0, 3, 5)
	$= 80(\frac{80}{4}) - (2 + \frac{\pi}{2})(\frac{80}{4})^2$	PC: : Substitution of x
	$4 + \pi^{2} = 448 \text{m}^{2}$	**Incorrect units and/or rounding = 4 marks**

<i>(b)</i>		
	$V = \frac{1}{12}\pi h^{2}(3-4h)$ $\frac{dV}{dh} = \frac{2}{12}\pi h(3-4h) - 4(\frac{1}{12}\pi h^{2})$ $= \frac{\pi h}{6}(3-4h) - \frac{\pi h^{2}}{3}$ $= \frac{\pi h}{2} - \frac{2\pi h^{2}}{3} - \frac{\pi h^{2}}{3}$ $= \frac{\pi h}{2} - \pi h^{2}$ $h = 0.1, \frac{dV}{dh} = 0.04\pi = \frac{\pi}{25}$ OR $V = \frac{1}{4}\pi h^{2} - \frac{1}{3}\pi h^{3}$ $\frac{dV}{dh} = \frac{1}{2}\pi h - \pi h^{2}$ $h = 0.1, \frac{dV}{dh} = 0.04\pi = \frac{\pi}{25}$	MS (0, 4, 7, 8, 10) LPC: Any correct differentiating step OR substituting in 0.1 to incorrect differential MPC: Some correct use of product rule/correct differential with one mistake HPC: Correct differential/answer not in terms of π
(ii)	$\frac{dV}{dt} = \frac{\pi}{800}$ $\frac{dh}{dt} = \frac{dh}{dv} \times \frac{dv}{dt}$ $@h = 0.1, \frac{dh}{dt} = \frac{1}{0.04\pi} \times \frac{\pi}{800}$ $\frac{dh}{dt} = \frac{25}{\pi} \times \frac{\pi}{800} = \frac{1}{32} = 0.03125$	MS (0, 4, 7, 8, 10) LPC: $\frac{dh}{dt} = \frac{dh}{dv} \times \frac{dv}{dt}$ OR correct substitution into incorrect use of chain rule MPC: Correct $\frac{dV}{dt}$ HPC: Correct substitution into $\frac{dh}{dt}$ Units not needed for full credit

